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Geometry has long been a generator of architecture. In
traditional Persian architecture, Rasmi domes project a
drawing onto a predefined 3D geometry. In fact, the
word ‘rasmi’ and the verb for drawing in Persian have
the same linguistic root. Projection is readily done in
manual drawings or conventional CAD programs. From
a constraint perspective, the dome is constrained by
the drawing and the 3D geometry. If the latter
constraint is replaced by invariance of distance on the
original drawing, a class of domes results, but members
of this class cannot be computed conventionally. Class
members are developable from a planar layout of
triangles, which is, in turn, generated by a simple
drawing rule. This yields a parametric structure of four
parameters. Three determine the initial planar diagram.
One determines configuration. Further, domes in the
class are mechanisms: they are not fully specified by the
constraints and parameters. We develop the geometric
constraints representing the location of the defining
points of a dome and present a goal-seeking algorithm
to solve the constraints within a propagation-based
parametric modeling system.
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1. RASMI DOMES IN PERSIAN ARCHITECTURE

In the design of traditional buildings in Iran, we find many examples of the
use of geometry as a generator of architecture, in both structural elements
and decorative forms and patterns. Distinct form families arise from simple
geometric constraints, as in Rasmi domes.“Rasmi” in Persian refers to
something that comes from a drawing, and a Rasmi dome is a type of dome
with specific decorative pattern under the dome.

Figure 1 shows how Rasmi domes are used singly and in combination to
define centrally focused or axial spaces. Single Rasmi’s are often used in
large domes in bazaars, with or without an opening in the dome centre, and
in the main domes of mosques.A series of Rasmi’s are also used in smaller
domes to cover the large prayer areas in mosques.

Nimkar is a form of Rasmi that consists of a semi-dome (see Figure 2).
Nimkars typically cover entrances or balconies.

� Figure 1. Examples of Rasmi domes.

(a) Rasmi dome in bazaar, Kashan, Iran (b) A series of Rasmis in 
     Nasir-Al-Molk Mosque,
     Shiraz, Iran

(b) Nimkar in a balcony, Jame Mosque, Isfahan, Iran(a) Nimkar in an entrance,
     Nasir-Al-Molk Mosque,
     Shiraz, Iran

� Figure 2. Examples of Nimkars.



� Figure 4. Sequential construction of

a star pattern of 5/2.

A Rasmi dome is generated by selecting key points of a diagram called a
star pattern. Star patterns have been used by Islamic architects in several
ways to create decorative patterns, intact as a pattern themselves, or as a
base for other, more complex patterns. (see Figure 3)

Figure 4 shows that a star pattern can be created by evenly putting n
points on a circle and drawing connecting lines from each point to the dth next
point on that circle. We call n the number of points in a star and d the jump.
The resulting pattern is referred to as a star of n/d. Star patterns can be
found in Islamic art and architecture in which 2 ≤ d ≤ n/2[3]1 .When d =1,
the result is a n-gon. For a star pattern to be used in the creation of a
dome, 3 < d < n/2.

Figure 5 shows 18-point star patterns with jumps of 3 to 8 points. The
opening in the middle becomes smaller as d increases.This clearly has
implications for the utility of a particular star pattern as a generator of
architectural enclosures.

Connecting the points on the circle in a star pattern results in the
creation of new sets of points on the intersection of each line with the
other lines.The points on the circle are called the first row of points, as they
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� Figure 3. Analysis of a pattern in

GazurGah, Herat,Afghanistan [2].
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1Kaplan specifies 2 < d < n/2, which error we correct here.
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are the first points that the lines intersect. Counting from outside in, the
second intersections of each two lines are collectively called the second row
of points, the third intersections the third row and so on, as shown in figure 6.
Each row of points has n members.

(a) First row (b) Second row

(c) Third row (d) Fourth row
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(a) 18/3 pattern (b) 18/4 pattern (c) 18/5 pattern

(d) 18/6 pattern (e) 18/7 pattern (f) 18/8 pattern

� Figure 5. Possible star patterns with

18 points on the circle.

� Figure 6. Rows of points in a star of

10/4.
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Representing the traditional Rasmi dome requires selection of
intersection points on a star pattern and projection onto a dome section
taken over the chords of the Rasmi dome diagram. Figure 7 shows modified
blueprints drawn by traditional Persian architects to describe ways of
creating Rasmi domes for their students. After projecting the points on the
wooden model of the dome section, they would use that model to
complete a dome [4].

In figure 8 we represent the same diagram in 3-dimensions, and present
the steps of projecting the star pattern to the dome.

In traditional Rasmis, Persian architects try to keep the shape of the
dome fixed. In other words, the shape of the dome is the constraint in
transforming a 2D star pattern into a Rasmi dome. But there are other
constraints from which related forms can arise.

2. FOLDING A STAR PATTERN TO CREATE A DOME

We change the geometric constraints in this model, from the shape of the
dome as Persian architects do to the length of the line segments in the star
pattern. Figure 9 shows that a simple physical way of maintaining length
constraints is drawing the star pattern on a piece of paper and folding it on
its lines. In this case, because paper doesn’t shrink or stretch, the line
segments, and consequently the triangles, stay fixed in shape throughout the
2D to 3D transformation. Of course, this is a special case: the original shape
need not be planar for the length constraint to be used.

Here we have a new class of dome structures that are simultaneously
coherent with examples from traditional Persian architecture, and with the
contemporary concern with kinetic (moveable) architecture.The class has the
property that its members are developable from a planar layout of triangles,

(a) Nimkar (b) Rasmi

� Figure 7. Projecting the 2D pattern

on the dome [4].



� Figure 8.The process of creating the

Persian dome.

� Figure 9. Folded paper modal.
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(a) Drawing the 2D star pattern under the dome (b) Making a model of the section of the 
     dome on a connecting line

(c) Finding the intersection points on the pattern (d) Projecting the points to the section model

(e) Transferring the points to the dome
      on all of the connecting lines

(f) Connecting the points on the dome

(a) 24/7 pattern (b) 36/9 pattern

(c) 24/7 dome (d) 36/9 dome



which are in turn generated by a simple drawing rule. All of its members are
also mechanisms, that is, the geometric location of elements is not completely
specified by parameters.This class is describable as a parametric structure of
four parameters.Three are used to generate the initial planar diagram. One is
used to determine configuration. Representing the class requires maintenance
of the length constraints given by the initial diagram.

In order to fold a star pattern, we need to remove the middle section of
each connecting line. In other words, in a star of n/d, for each line, the
section after its (d – l )th intersection with other lines will be removed.This
leaves a non-convex central polygon that is free of lines.At this point, the
visible lines are the ridge creases. Now we add the valley creases by drawing
radial lines from each point on the circle to the center of the circle and
removing the part in the middle as shown in figure 10. Continuous lines
show the ridge creases and dashed lines show the valley creases.To create
the paper model, we must remove the central polygon and the outer
wedges between the circle and the star pattern.(See Figure 9.)

We call the base circle in the 2D star pattern the 2D circle and its 2D
radius R. After folding the pattern, the circle that the dome covers we call
the final circle and its final radius r. So r is always smaller than R. When we
fold a paper pattern, we can push the final circle more and more inside and
it changes the height and shape of the dome. Figure 11 compares domes of
n/d = 18/7, with the same R and different rs in 3 views. By decreasing the
ratio of r/R, the height of the dome increases.At the same time, the
curvature of the dome increases and the dome folds inward.The four dome
parameters are thus the number of points n, the jump d, the 2D radius R,
and the final radius r.

With the same R and r, the shape of the dome depends on the number
of points on the circle, n, and the number of jumps, d. As shown in figure
12, with the same n, the dome closes in the middle when d increases. On
the other hand, by increasing n, the dome will have more and smaller facets.

� Figure 10. Model before and after

folding.
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� Figure 11. Domes of 18/7 with the

same R and different r’s.
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(a) Ratio = 1.0 (b) Ratio = 0.95

(c) Ratio = 0.90 (d) Ratio = 0.85

(e) Ratio = 0.80 (f) Ratio = 0.75

�  Figure 12. Different variations of

the dome.

(a) 18/4 pattern (b) 18/6 pattern (c) 18/8 pattern

(d) 24/4 pattern (e) 24/6 pattern (f) 24/8 pattern

(g) 30/4 pattern (h) 30/6 pattern (i) 30/8 pattern



� Figure 13. Different configurations

in the allowable range for the first row

of polygons.

In any star pattern, we can choose to draw a subsequence of the point
rows. Figure 13, showing only the first three point rows, makes the
structural mechanism clearly apparent. If only two point rows are drawn, the
second row of points could, in fact, rotate freely around the first row. Each
angle of rotation yields a physically feasible configuration.Adding even a single
row of points significantly constrains the physically feasible configurations.As
the number of point rows grows, the mechanism becomes even more
constrained and more difficult to visualize.
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3. CREATING THE DOME IN CAD SYSTEMS

The algorithm for creating the traditional Persian dome (Rasmi) in any CAD
system is very similar to the traditional construction algorithm: draw the 2D
diagram, find the section of the dome on the connecting lines, project the
points on the sections, connect the points. It is simple, which makes a lot of
sense, since traditional architects had to do it manually, without the
computational technology that we have today.

As soon as we change the geometric constraints of the model, it
becomes much more difficult, depending on the type of the parametric
modeler being used.The class presents challenges to the GUI of available
constraint-based systems (for example, SolidWorks). Representing such
domes in a propagation-based parametric modeler requires using a goal
seeker strategy in which the outputs of the model are iteratively recycled to
its inputs.

In order to understand the process in any of these systems, we need to
take a closer look at the geometry behind this mechanism. (See Figure 14.)
Consider that the lengths do not change at any time. Each point Pi lies at a
fixed distance along a connecting line from the two nearest points on the 
(i – 1)th row. At the same time, Pi on the ith row of the dome lies at a fixed
distance from the corresponding point P2 on the (i – 2)th row along their
shared radial line.Thus Pi lies at the intersection of three spheres, centred
on the two nearest points on the (i – 1)th row and on the corresponding
point on the (i – 2)th row respectively.

The underlying star patterns guarantees that the two connecting lines
from the nearest points on the (i – 1)th row are of equal length. Presuming
that the dome configuration is radially symmetrical (this is not a physically
necessary constraint, but suffices for this process of finding a feasible dome
configuration), the two spheres centred on the nearest points on the (i – 1)th

row are also radially symmetrical and this forces their intersection to be on



a vertical plane running through the dome centre and Pi. Using this plane to
cut the circle centred on P2 yields two coplanar circles, which constrain
where P1 lies.Therefore, to find a point on the ith row, we need to have the
points on the previous rows, then draw the corresponding circles on the
radial plane (the vertical plane containing the radial line), and find their
intersections.A configuration is feasible exactly when these two circles
intersect.We choose the top point between the two intersections for a
dome that goes upward and the bottom one for a dome that goes down,
but the same choice for all of the rows.
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(a) The first constraint is Pi must lie equidistant from the nearest points on the
      (i − 1)th point row and at distance equal to the length of the connecting lines
      between  Pi and these points.

(b) The second constraint is that Pi must lie on a circle with radius equal to the 
      length of the radial line between Pi and Pi − 2.

(c) The result of solving these two constraints is two points on the intersection of two circles.

� Figure 14. Finding a point on the

fourth row of a dome.The diagram is

without loss of generality – it applies

to finding any Pi where i ≥ 2.



� Figure 15.The algorithm for creating

representative points on all rows in a

18/5 dome.

We repeat this point-finding mechanism for each row of points, using the
points on previous rows, except for rows one and two. (See Figure 15.)
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(a) Finding the second row 
     of points

(b) The second row has infinite 
      rotational freedom

(c) The first constraint for the 
      third row of points

(g) The second constraint for
      the fourth row of points

(h) The fourth row of points

(i) The first constraint for the 
      fifth row of points

(j) The second constraint for
     the fifth row of points

(k) The fifth row of points (l) The completed section of 
     the dome

(d) The second constraint for 
      the third row of points

(e) The third row of points (f) The first constraint for the 
     fourth row of points



The first row of points comprises the points on the circle.The second
row of points is different from the rows to come, in that it only has one of
the two constraints, the same distance from the nearest two points on the
first row.This lack of constraints, gives this row of points infinite rotational
freedom, by which they can move on a circle.Adding each row of points
limits this range more and more. If we put the second row points outside
this range, the circles would not intersect and it would be geometrically
impossible to find the points on the following rows.We need to find this
range to compute a complete dome for each and possible value of n
(number of points on the circle), d (jump), R (the 2D radius in the 2D
pattern), and r (the final radius in the 3D model). Finding the feasible range
is what requires a goal seeker.

Figure 16 shows a parametric model in which a parametric point on an
inner circle placed asymmetrically within an outer circle locates a third
circle. An intersection between the outer and the third circle only exists
for some values of t, the parameter of the point on the inner circle.
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(a) t = 0.0

t = 0.15 t = 0.20118

t = 0

(b) t = 0.15 (c) t = 0.20118

 t = 0.25

t = 0.45

t = 0.65

(g) t = 0.75 (h) t = 0.79474 (i) t = 0.85

t = 0.75 t = 0.79474 t = 0.85

(d) t = 0.25 (e) t = 0.45 (f) t = 0.65

� Figure 16.The feasible range of

possible solutions.The circles intersect

only when 0.20118 < T < 0.79474.



However, in the parametric model, t is upstream of the third circle.
(see Figure 17) We must search the possible values of t (from 0 to 1) to
find the range of t in which an intersection occurs.

The goal seeker is used when “we don’t know the input value that
makes a specific output” [5] and the intent of a goal seeker is “to change an
input until a chosen output meets a threshold” [5]. In the case of the dome,
for each ith row, a goal seeker finds the maximum and minimum positions on
the circle for its points by varying the angle of rotation of the row.

The goal seeker script changes the position of the second row points on
the circle, then updates the graph and checks the status of the points on
the rows so far. If their creation is successful, the job is done. If not, the goal
seeker slightly changes the position of second row points, and updates the
graph and checks the points again.This loop continues to run until all the
points are successfully created [5].

To do that, the goal seeker uses a combination of hill-climbing and binary
search.While doing the search, the incremental change of the position may
cause the second row points to pass the range. In that case, the script
reverses and reduces the step change and continues the search again, until
the final result is achieved. [5]

Any model in a propagation based system can be represented by a graph
of nodes and arcs connecting the nodes.The nodes are objects containing
dependent and/or independent variables and constraint between the
variables. An arc that connects node 1 to node 2 means that a variable in
node 2 is dependent on a variable in node 1. A node with no arc coming
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� Figure 17.The symbolic graph of the

3 circle model shows that t is

upstream of the third circle.



into it is an independent node. Objects are typed and each type has update
algorithms based on the dependent and independent variables of that
object.To be computable with the standard propagation algorithms, graphs
cannot have cycles since no topological sort of the graph is then possible
and the propagation algorithm would thus not terminate [1].

A goal seeker introduces a cycle by being able to let the status of a
result control the value of an input.

In propagation without goal-seeking, as soon as any independent variable
in the graph changes, the graph is automatically updated, meaning that the
nodes are visited and their values are computed using their update
algorithm. In a simple example of an order three bezier curve, a change in
one of the base points causes an update to the graph, so that all the objects
dependent on that point in the model follow that change.

With a goal seeker, we take control of update graph by explicitly calling
the graph updating function (UpdateGraph in GC). By doing this, we can
specify when and where in the goal seeker script we want the graph to be
updated and values to be computed.

Input
Input

Input

Model

Output

Output
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� Figure 18. Goal seeker causes a

cycle in the graph [5].



Here is the algorithm for a general goal seeker written in pseudocode.
1 FUNCTION Side (result , target)
2 IF (result – target)/|(resuIt – target) | > 0
3 RETURN TRUE
4 ELSE
5 RETURN FALSE
6 // TRUE if result > target AND FALSE if result < target
7 // The function Side will be particular to each specific goalseeker
8 FUNCTION Dist ( current Position, threshold)
9 RETURN the distance between the current state of the model and the desired

state at the threshold
10 // This function determines how far the result is from the target
11 SET driver to the desired variable that is going to be changed
12 SET result to the variable or object property that you want to check
13 SET target to the threshold that the result should meet

390 Maryam M. Maleki and Robert F. Woodbury

Coordinate system

baseCS

Line

First order line02

Line

Second order line01

Line

First order line01

Point

point01

Point

point02

Point

point03

Point

point06

Point

Bezier point

BSpline curve

Bezier curve

(a) When an independent
     point moves, the graph 
     is updated to reflect the
     change

(b) The independent point and its con-
      sequent nodes in the graph

Point

point05

� Figure 19:An order three bezier

curve and its symbolic node graph in a

propagation based CAD system.



14 INITIALIZE lastKnown 
15 INITIALIZE lastKnownDist 
16 SET incrementSubdivided to 0
17 // the number of times that incrementSubdevided is divided 
18 SET incrementAdded to 0
19 // the number of times that the increment is added to the driver
20 SET increment to any reasonable value in the search context, such as 0.2
21 SET giveUpWhen to 100
22 SET closeEnough to 0.0001
23 SET currentSide = Side(result, target)
24 WHILE | increment | > closeEnough AND increment Subdivided < giveUpWhen
25 SET increment Added to 0 // initialization
26 WHILE Side(result ,target) = currentSide AND increment Added < giveUpWhen
27 // checking to see if we are still at the same side of the threshold that we were

before and have not jumped over it
28 SET lastKnown to the driver
29 // always keep track of our last position before moving forward
30 SET lastKnownDist to Dist(result, target)
31 SET incrementAdded to incrementAdded +1
32 SET driver to driver + increment
33 Update the graph
34 IF | Dist(result ,target)| > | lastKnownDist | AND Side(result, target ) = currentSide
35 // if the result is getting farther from the target without passing it, then we need to

change the direction of our search
36 increment = – increment
37 ENDIF
38 ENDWHILE
39 SET driver to lastKnown
40 // if we have jumped over the threshold , we go back to where we were before

and start again with a smaller increment
41 Update the graph
42 SET incrementSubdivided to incrementSubdivided +1
43 DIVIDE increment by 2
44 ENDWHILE

In the context of the dome, the algorithm slightly changes to match the
geometry. Since we are looking for a range, with a maximum and a minimum
point, we need to run the goal seeker twice to find both ends of the range.
1 FUNCTION Side( point)
2 IF Success(point)
3 RETURN TRUE
4 ELSE
5 RETURN FALSE
6 // In a propagation–based system, each object is in either a “ successfull” or an

“unsuccessful” state depending on the las invocation of its update method.
7 FUNCTION Dist ( current Position ,threshold)
8 RETURN the distance between the current state of the model and the desired

state at the threshold , in this case, the perpendicular distance between the two
circles that should intersect to produce the Nth row point. 

9 // This function determines how far the result is from the target
10 SET driver to the parameter (T) of the second row points of the dome
11 SET result to the Nth row of points in the dome (the last built row)
12 SET target to TRUE
13 INITIALIZE lastKnown
14 INITIALIZE lastKnownDist
15 SET incrementSubdivided to 0
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16 SET incrementAdded to 0
17 SET increment to any reasonable value , such as 0.2
18 SET giveUpWhen to 100
19 SET closeEnough to 0.0001
20 WHILE | increment | > closeEnough and incrementSubdivided < giveUpWhen
21 SET incrementAdded to 0
22 WHILE Side(result) = target AND incrementAdded < giveUpWhen
23 // Checking to see if we are still inside the range and have not jumped over the

threshold
24 SET lastKnown to the driver
25 // Always keep track of our last position before moving forward
26 SET lastKnownDist to Dist(result ,target)
27 SET incrementAdded to incrementAdded +1
28 SET driver to driver + increment
29 Update the graph
30 IF | Dist(result ,target)| > | lastKnownDist | AND Side(result) 

= target
31 // if the result is getting farther from the target without passing it, then we need to

change the direction of our search
32 increment = – increment
33 ENDIF
34 ENDWHILE
35 SET driver to lastKnown
36 // If we have jumped over the threshold , we go back to where we were before and

start again with a smaller increment
37 Update the graph
38 SET incrementSubdivided to incrementSubdivided +1
39 DIVIDE increment by 2
40 ENDWHILE

In order for the first condition to be satisfied and the loop to start, the
second row points have to be at a position where the points in the current
row are being successfully created. In other words, they have to be
somewhere inside the range of feasible configurations.The following
algorithm is another version of a goal seeker that puts the points inside the
range. It needs to be run before the main goal seeker.This loop starts when
the points are outside the feasible range. It moves the points, checks to see
if it is moving towards the range and not in the wrong direction. If so, it
keeps moving the point until it falls inside the range or it passes the range. If
it passes over the range, it returns the point to the previous position and
makes the step size smaller to avoid passing the range.
1 FUNCTION Side( point)
2 IF Success(point)
3 RETURN TRUE
4 ELSE
5 RETURN FALSE
6 // In a propagation—based system, each object is in either a “successfull” or an

“unsuccessful” state depending on the last invocation of its update method.
7 FUNCTION Dist (current Position ,threshold)
8 RETURN the distance between the current state of the model and the desired

state at the threshold , in this case, the perpendicular distance between the two
circles that should intersect to produce the Nth row point 

9 // This function determines how far the result is from the target
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10 SET driver to the parameter (T) of the second row points of the dome
11 SET result to the Nth rwo of points in the dome (the last built row)
12 SET target to TRUE
13 INITIALIZE lastKnown
14 INITIALIZE lastKnownDist
15 SET incrementSubdivided to 0
16 SET incrementAdded to 0
17 SET increment to any reasonable value , such as 0.2
18 SET giveUpWhen to 100
19 SET closeEnough to 0.0001
20 INITIALIZE rangePassed
21 // rangePassed is true only when during the search , result passes the whole

feasible range
22 WHILE | increment | > closeEnough AND incrementSubdivided < giveUpWhen

AND result != target
23 SET incrementAdded to 0
24 SET rangePassed to false
25 WHILE result != target AND incrementAdded < giveUpWhen AND rangePassed =

false
26 // Checking to see if we have passed the range in which case we have to go back

and take a smaller step, or we are actually inside the range and we stop the
search

27 SET lastKnown to the driver
28 // Always keep track of our last position before moving forward
29 SET lastKnownDist to Dist ( resuIt , target )
30 // Keeping track of the last value of distance between result and target to be able

to compare our new status with the previous one
31 SET incrementAdded to incrementAdded +1
32 SET driver to driver + increment
33 Update the graph
34 IF Dist(result ,target) * lastKnownDist < 0
35 // Which means we have passed over the range and need to go back and take a

smaller step
36 SET driver to lastKnown
37 Update the graph
38 SET rangePassed to true
39 ELSE IF Dist(result ,target) > lastKnownDist
40 // Which means that we are moving in the wrong direction and we need to change

direction
41 SET increment to —increment
42 ENDIF
43 ENDIF
44 ENDWHILE
45 SET incrementSubdivided to incrementSubdivided +1
46 DIVIDE increment by 2
47 ENDWHILE

There are three main steps in creating the dome in a propagation-base
parametric system, such as Bentley’s Generative Components, as shown in
figure 20. First, we need to draw the 2D star pattern (all Rasmi domes
originate from a drawing). From this pattern, we extract the lengths of the
line segments, which will remain the same until the end. Second, we create
the smallest section of the dome that includes the points in all rows.
Considering that, in order to find a point in any row, we need the two
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nearest points in the previous row, the smallest section in a dome of n/d
starts with d points on the final circle and ends with one point on the dth

row. In this step we find the position of each row of points using goal seeker.
We then use this data to create the complete dome in the third and final
step by creating the points and connecting them.

This algorithm can also be used in non-CAD systems, such as Processing
and Microsoft Excel. In these type of software, we simply follow the same
steps, repeating solving the geometrical equations inside a hill-climbing
algorithm that we must write and storing the data, without really having to
draw anything.A goal seeker is an inevitable part of the process in all of
these systems. Once we have the algorithm, we can easily produce
variations of the dome, by changing the different parameters as shown in
figures 11 and 12.

(a) Step1: Drawing the 2D pattern (b) Step 2: Finding the points 
     in the smallest section of
     the dome, using the
     goal seeker

(c) Step 3: Creating the dome
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� Figure 20.Three steps of creating

the dome in Generative Components.
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